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Solutions for Chapter 1

Exercise 1.1

(a) R = 5kΩ + 10 kΩ = 15 kΩ

(b) R =
R1R2

R1 +R2
=

5kΩ× 10 kΩ

5 kΩ + 10 kΩ
= 3.33 kΩ

Exercise 1.2

P = IV =

(
V

R

)
V =

(12V)2

1Ω
= 144W

Exercise 1.3

Consider a simple series resistor circuit.

Figure 1.1: A basic series circuit.

−
+

V

I

R1

+

−

V1

R2

+

−

V2

By KVL and Ohm’s law

V = V1 + V2 = R1 · I +R2 · I = (R1 +R2) · I = R · I

where
R = R1 +R2

is the resistance of R1 and R2 in series. Now, consider a simple parallel resistor circuit.
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6 CHAPTER 1. SOLUTIONS FOR CHAPTER 1

Figure 1.2: A basic parallel circuit.

−
+

V

I

R1

I1

R2

I2

By KCL and Ohm’s law

I = I1 + I2 =
V

R1
+

V

R2
=

(
1

R1
+

1

R2

)
· V

solving for V as a function of I we get

V =
1

1
R1

+ 1
R2

· I =
R1R2

R1 +R2
· I = R · I

where

R =
1

1
R1

+ 1
R2

=
R1R2

R1 +R2

is the resistance of R1 and R2 in parallel.

Exercise 1.4

We known that the resistance R12
1 of two resistors R1 and R2 in parallel is given by

R12 =
1

1
R1

+ 1
R2

Now, the resistance R123 of three resistors R1, R2 and R3 in parallel is equal to the resistance of two
resistors R12 (the resistance between R1 and R2 in parallel) and R3 in parallel, then

R123 =
1

1
R12

+ 1
R3

=
1

1
R1

+ 1
R2

+ 1
R3

We will prove by induction that the resistance R1···n of n resistances R1, R2, . . . , Rn in parallel is given
by

R1···n =
1∑n

i=1
1
Ri

First, it’s trivial to show that with n = 1 the equality holds. Now, we will assume that the equality is
satisfied for n = k, that is

R1···k =
1∑k

i=1
1
Ri

1Here we have only assigned a name to the resistance in parallel between R1 and R2.
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Then, we must show that equality holds for n = k+1. Thus, the resistance R1···(k+1) of (k+1) resistances
R1, R2, . . . , Rk+1 in parallel is equal to the resistance of two resistors R1···k and Rk+1 in parallel, then

R1···(k+1) =
1

1
R1···k

+ 1
Rk+1

=
1∑k

i=1
1
Ri

+ 1
Rk+1

=
1∑k+1

i=1
1
Ri

where we have proved that equality holds for n = k + 1. Finally, the resistance of n resistors in parallel is
given by

R1···n =
1∑n

i=1
1
Ri

=
1

1
R1

+ 1
R2

+ . . .+ 1
Rn

Exercise 1.5

Given that P =
V 2

R
, we know that the maximum voltage we can achieve is 15V and the smallest resistance

we can have across the resistor in question is 1 kΩ. Therefore, the maximum amount of power dissipated
can be given by

P =
V 2

R
=

(15V)2

1 kΩ
= 0.225W

This is less than the 0.25W power rating.

Exercise 1.6

(a) The total current required by New York City that will flow through the cable is

I =
P

V
=

1× 1010 W

115V
= 86.96MA

Therefore, the total power lost per foot of cable can be calculated by:

P = I2R =
(
86.96× 106 A

)2 × (
5× 10−8 Ω/ft

)
= 3.78× 108 W/ft

(b) The length of cable over which all 1× 1010 W will be lost is:

L =
1× 1010 W

3.78× 108 W/ft
= 26.45 ft

(c) To calculate the heat dissipated by the cable, we can use the Stefan-Boltzmann equation T = 4

√
P
Aσ ,

with A corresponding to the cylindrical surface area of the 26.45 ft section of 1-foot diameter cable.
Note that σ is given in cm2, so we will need to use consistent units.

A = πDL = π × 30.48 cm× 806.196 cm = 7.72× 104 cm2

Therefore,

T =
4

√
P

Aσ
= 4

√
1× 1010 W

7.72× 104 cm2 × 6× 10−12 W/K4/cm2
= 12,121K

This is indeed a preposterous temperature, more than twice that at the surface of the Sun! The solution
to this problem is that power should be transmitted along long distances at high voltage. This greatly
reduces I2R losses. For example, a typical high voltage line voltage is 115 kV. At this voltage, the
power loss per foot of cable is only 378W per foot. Intuitively, we know that reducing current allows
for lower power dissipation. We can deliver the same amount of power with a lower current by using
a higher voltage.
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Exercise 1.7

A 20,000ΩV−1 meter read, on its 1V scale, puts a 20,000ΩV−1 · 1V = 20,000Ω = 20 kΩ resistor in series
with an ideal ammeter (ampere meter). Also, a voltage source with an internal resistance is equivalent to
an ideal voltage source with its internal resistance in series.

(a) In the first question, we have the following circuit:

Figure 1.3: A voltage source with internal resistance and a 20,000ΩV−1 meter read in its 1V scale.

−
+

1V

10 kΩ
I

20 kΩ

A

Then, we have that the current in the ideal ammeter and the voltage in the meter resistance are given
by2

I =
1V

10 kΩ + 20 kΩ
= 0.0333mA and V = 0.0333mA× 20 kΩ = 0.666V

(b) In the second question, we have the following circuit:

Figure 1.4: A 10 kΩ− 10 kΩ voltage divider and a 20,000ΩV−1 meter read in its 1V scale.

−
+

1V

10 kΩ

10 kΩ

A

20 kΩ

Now, we can to obtain the Thévenin equivalent circuit of circuit in Figure 1.4 with

RTh =
10 kΩ · 10 kΩ
10 kΩ + 10 kΩ

= 5kΩ

2When a meter only measures currents, it puts a resistance in series to measures the current through that resistance and
internally converts that current into voltage to measure voltages.
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and

VTh = 1V · 10 kΩ

10 kΩ + 10 kΩ
= 0.5V

Then, we have the following equivalent circuit:

Figure 1.5: Thévenin equivalent circuit of circuit in Figure 1.4.

−
+

VTh

RThI

A

20 kΩ

Finally, we have that the current in the ideal ammeter and the voltage in the meter resistance are
given by

I =
0.5V

5 kΩ + 20 kΩ
= 0.02mA and V = 0.02mA · 20 kΩ = 0.4V

Exercise 1.8

(a) In the first part, we have the following circuit:

Figure 1.6: 50µA ammeter with 5 kΩ internal resistance (shown in blue) in parallel with shunt resistor.

I

5 kΩIm
A

RsIs

We want to measure I for 0-1 A, and the ideal ammeter measures up to 50 µA. To find what shunt
resistance Rs allows us to do so, we set I = 1A and Im = 50 µA. By KCL we know Is = 0.999950A.
To determine Rs, we still need to find the voltage across it. We can find this voltage by doing

V = ImRm = 50µA · 5 kΩ = 0.25V

Then we simply do

Rs =
V

Is
=

0.25V

0.999950A
= 0.25Ω
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(b) In the second part, we have the following circuit:

Figure 1.7: 50µA ammeter with 5 kΩ internal resistance (shown in blue) with a series resistor.

−
+

V

I

5 kΩ

A

Rs

We want to measure V for 0-10 V, and the ideal ammeter measures up to 50 µA. To find the series
resistance Rs, we set V = 10V and I = 50µA. Then we solve

V

I
= 5kΩ +Rs

Rs =
10V

50 µA
− 5 kΩ = 195 kΩ

Exercise 1.9

In order to measure resistance well above the range of your multimeter, you need to get creative. We will
be using the multimeter in voltmeter mode. Lets start by connecting our DC voltage source, voltmeter, and
the high-value resistor in series. (The reason for doing this will become clear later).

Figure 1.8: Connection of three components.

−
+

Vin

voltmeter

RL

Vin is our test voltage, and RL is our leakage resistance. We need to revise the model for our voltmeter.

Figure 1.9: The voltmeter is now modeled as a resistor with value RM .

−
+

Vin

Iin
RM

IM

RL

IL
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The current flowing through our meter (modeled by the resistor RM ) is equal to the current flowing
through the leakage resistor. This is also equal to the current supplied from our voltage source.

IM = IL = Iin

Figure 1.10: Voltage and current labels are added.

−
+

Vin

Iin
RM

+ −
VM

RL

+

−

VL

Notice: this test circuit is a voltage divider. When you use this technique, the voltmeter itself makes
up half of the divider. The voltage across the leakage resistor cannot be measured directly, so we calculate
it using Kirchhoff’s Voltage Law by subtracting our voltmeter’s reading from the voltage of our DC supply.

VL = Vin − VM

The current through the voltmeter’s resistance is given by Ohm’s Law.

IM =
VM

RM

The current through the leakage resistor is given by Ohm’s Law.

IL =
VL

RL

We already determined that IM and IL are equal, so we can set the two previous expressions equal to each
other.

IM = IL ⇒ VM

RM
=

VL

RL

We will rearrange the above equation to give an expression for RL.

RL = RM
VL

VM

Now we can substitute our first expression for VL into the previous equation to eliminate VM (the final
unknown term).

RL = RM
Vin − VM

VM

Rewriting the equation, the final result is

RL = RM

(
Vin

VM
− 1

)
To measure leakage current with a voltmeter, simply divide the meter’s reading by the resistance of the

meter. For example, if your 10MΩ voltmeter measures 0.023V, then Ileakage = 23mV/10MΩ = 2.3 nA.
The accuracy of such a measurement depends both on the accuracy of the voltage measurement, and the
tolerance of the meter’s resistance.
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Exercise 1.10

(a) With two equal-value resistors, the output voltage is half the input voltage.

Vout =
1

2
Vin =

30V

2
= 15V

(b) To treat R2 and Rload as a single resistor, combine the two resistors which are in parallel to find that the
combined (equivalent) resistance is 5 kΩ. Now, we have a simple voltage divider with a 10 kΩ resistor
in series with the 5 kΩ equivalent resistor. The output voltage is across this equivalent resistance. The
output voltage is given by

Vout = Vin
5 kΩ

10 kΩ + 5kΩ
=

30V

3
= 10V

Figure 1.11: Voltage divider with simplified equivalent resistance

−
+

Vin Req

R1

−

+

Vout

(c) We can redraw the voltage divider circuit to make the “port” clearer.

Figure 1.12: Voltage divider with port shown.

−
+

Vin R2

R1

−

+

Vout

We can find VTh by leaving the ports open (open circuit) and measuring Vout, the voltage across R2.

This comes out to be half the input voltage when R1 = R2, so Vout = 15V. Thus VTh = 15V .

To find the Thévinen resistance, we need to find the short circuit current, ISC . We short circuit the
port and measure the current flowing through it.

Figure 1.13: Voltage divider with short circuit on the output.

−
+

Vin R2

R1

ISC
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In this circuit, no current flows through R2, flowing through the short instead. Thus we have ISC =
Vin

R1
.

From this, we can find RTh from RTh =
VTh

ISC
. This gives us

RTh =
VTh

ISC
=

VTh

Vin/R1
=

15V

30V/10 kΩ
= 5kΩ

The Thévenin equivalent circuit takes the form shown below.

Figure 1.14: Thévenin equivalent circuit.

−
+

VTh

RTh

−

+

Vout

In terms of behavior at the ports, this circuit is equivalent to the circuit in Figure 1.11.

(d) We connect the 10 kΩ load to the port of the Thévenin equivalent circuit in Figure 1.14 to get the
following circuit.

Figure 1.15: Thévenin equivalent circuit with 10 kΩ load.

−
+

VTh

RTh

10 kΩ

−

+

Vout

From here, we can find Vout, treating this circuit as a voltage divider.

Vout =
10 kΩ

RTh + 10 kΩ
VTh =

10 kΩ

5 kΩ + 10 kΩ
· 15V = 10V

This is the same answer we got in part (b).

(e) To find the power dissipated in each resistor, we return to the original three-resistor circuit.

Figure 1.16: Original voltage divider with 10 kΩ load attached.

−
+Vin Rload

R1

R2
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From part (d), we know that the output voltage is 10V and that this is the voltage across the load

resistor. Since P = IV = V 2

R , we find that the power through Rload is

Pload =
V 2

Rload
=

(10V)2

10 kΩ
= 10mW

Similarly, we know that the power across R2 is the same since the voltage across R2 is the same as the
voltage across Rload. Thus we have

P2 = 10mW

To find the power dissipated in R1, we first have to find the voltage across it. From Kirchoff’s loop
rule, we know that the voltage around any closed loop in the circuit must be zero. We can choose
the loop going through the voltage source, R1, and R2. The voltage supplied by the source is 30V.
The voltage dropped across R2 is 10V as discussed before. Thus the voltage dropped across R1 must
be 30V − 10V = 20V. Now we know the voltage across and the resistance of R1. We use the same
formula as before to find the power dissipated.

P1 =
V 2

R1
=

(20V)2

10 kΩ
= 40mW

Exercise 1.11

Consider the following Thévenin circuit where Rsource is just another name for the Thévenin resistance, RTh.

Figure 1.17: Standard Thévenin circuit with attached load.

−
+VTh Rload

Rsource

We will first calculate the power dissipated in the load and then maximize it with calculus. We can find
the power through a resistor using current and resistence since P = IV = I(IR) = I2R. To find the total
current flowing through the resistors, we find the equivalent resistance which is Rsource + Rload. Thus the

total current flowing is I =
VTh

Rsource +Rload
. The power dissipated in Rload is thus

Pload = I2Rload =
V 2
ThRload

(Rsource +Rload)2

To maximize this function, we take the derivative and set it equal to 0.

dPload

dRload
= VTh

(Rsource +Rload)
2 − 2Rload(Rsource +Rload)

(Rsource +Rload)4
= 0

=⇒ Rsource +Rload = 2Rload

=⇒ Rsource = Rload
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Exercise 1.12

(a) Voltage ratio: V2

V1
= 10dB/20 = 103/20 = 1.413

Power ratio: P2

P1
= 10dB/10 = 103/10 = 1.995

(b) Voltage ratio: V2

V1
= 10dB/20 = 106/20 = 1.995

Power ratio: P2

P1
= 10dB/10 = 106/10 = 3.981

(c) Voltage ratio: V2

V1
= 10dB/20 = 1010/20 = 3.162

Power ratio: P2

P1
= 10dB/10 = 1010/10 = 10

(d) Voltage ratio: V2

V1
= 10dB/20 = 1020/20 = 10

Power ratio: P2

P1
= 10dB/10 = 1020/10 = 100

Exercise 1.13

There are two important facts to notice from Exericse 1.12:

1. An increase of 3 dB corresponds to doubling the power

2. An increase of 10 dB corresponds to 10 times the power.

Using these two facts, we can fill in the table. Start from 10 dB. Fill in 7 dB, 4 dB, and 1 dB using fact 1.
Then fill in 11 dB using fact 2. Then fill in 8 dB, 5 dB, and 2 dB using fact 1 and approximating 3.125 as π.

dB ratio(P/P0)
0 1

1 1.25

2 π/2

3 2

4 2.5

5 3.125 ≈ π
6 4

7 5

8 6.25
9 8
10 10

11 12.5
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Exercise 1.14

Recall the relationship between I, V , and C: I = C dV
dt . Now, we perform the integration:∫

dU =

∫ t1

t0

V Idt

U =

∫ t1

t0

CV
dV

dt
dt

= C

∫ Vf

0

V dV

U =
1

2
CV 2

f

Exercise 1.15

Consider the following two capacitors in series.

Figure 1.18: Two capacitors in series.

C1 C2

+ −Vtotal

To prove the capacitance formula, we need to express the total capacitance of both of these capacitors
in terms of the individual capacitances. From the definition of capacitance, we have

Ctotal =
Qtotal

Vtotal

Notice that Vtotal is the sum of the voltages across C1 and C2. We can get each of these voltages using the
definition of capacitance.

Vtotal = V1 + V2 =
Q1

C1
+

Q2

C2

The key observation now is that because the right plate of C1 is connected to the left plate of C2, the charge
stored on both plates must be of equal magnitude.3Therefore, we have Q1 = Q2. Let us call this charge
stored Q (i.e. Q = Q1 = Q2). Now, we know that the total charge stored is also Q.4Therefore, we know
that Qtotal = Q. Now, we have

Ctotal =
Qtotal

Vtotal
=

Q

Q1/C1 +Q2/C2
=

Q

Q/C1 +Q/C2
=

1

1/C1 + 1/C2

4If this were not true, then there would be a net charge on these two plates and the wire between them. Because we assume
that the capacitors started out with no net charge and there is no way for charge to leave the middle wire or the two plates it
connects, this is impossible.

4If you are having trouble seeing this, suppose we apply a positive voltage to the left plate of C1 relative to the right plate
of C2. Suppose this causes the left plate of C1 to charge to some charge q. We now must have a charge of −q on the right plate
of C1 because q units of charge are now pushed onto the left plate of C2. Now the left of C2 has q units of charge which causes
a corresponding −q charge on the right side of C2. Thus the overall total charge separated across these two capacitors is q.
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Exercise 1.16

Equation 1.21 gives us the relationship between the time and the voltage (Vout) across the capacitor while
charging. To find the rise time, subtract the time it takes to reach 10% of the final value from the time it
takes to reach 90% of the final value.

Vout = 0.1Vf = Vf (1− e−t1/RC)

0.1 = 1− e−t1/RC

t1 = −RC ln(0.9)

Similarly, we find that t2 = −RC ln(0.1). Subtracting these two gives us

t2 − t1 = −RC(ln(0.1)− ln(0.9)) = 2.2RC

Exercise 1.17

The voltage divider on the left side of the circuit can be replaced with the Thévenin equivalent circuit found
Exercise 1.10 (c). Recall that VTh = 1

2Vin and RTh = 5kΩ. This gives us the following circuit.

Figure 1.19: Thévenin equivalent circuit to Figure 1.36 from the textbook.

+

−

VTh

RTh

C

+

−

V (t)

Now we have a simple RC circuit which we can apply Equation 1.21 to. The voltage across the capacitor
is given by

V (t) = Vfinal(1− e−t/RC) = VTh(1− e−t/RThC =
1

2
Vin(1− e−t/5×10−4

)

Figure 1.20: V(t) sketch.

t/ms

V

(0, 0)

1
2
Vin(1− e−t/(5×10−4))

1
2
Vin

(0.5, 1
2Vin × 63%)
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Exercise 1.18

From the capacitor equation in the previous paragraph, we have

V (t) = (I/C)t = (1mA/1 µF)× t = 10V

This gives us

t = 0.01 s

Exercise 1.19

Suppose a current I is flowing through a loop of wire with cross-sectional area A. This induces a magnetic
field B, and the flux Φ through the loop is

Φ = BA

Now suppose the same current I flows through a wire coiled into n loops, each with the same cross-sectional
area A. This induces a magnetic field of n times the strength, Bn = nB. Since each loop has area A, the
total cross-sectional area of the coil can be considered An = nA. Then the magnetic flux through the coil is

Φn = BnAn = n2BA = n2Φ

Since inductance is defined as flux through a coil divided by current through the flux, we can see that
Φn = n2Φ implies L ∝ n2.

Exercise 1.20

We can use the formula for the full-wave rectifier ripple voltage to find the capacitance.

Iload
2fC

= ∆V ≤ 0.1Vp-p

The maximum load current is 10mA and assuming a standard wall outlet frequency of 60 Hz, we have

C ≥ 10mA

2× 60Hz× 0.1V
= 833µF

Now we need to find the AC input voltage. The peak voltage after rectification must be 10V (per the
requirements). Since each phase of the AC signal must pass through 2 diode drops, we have to add this to
find out what our AC peak-to-peak voltage must be. Thus we have

Vin,p-p = 10V + 2(0.6V) = 11.2V

Exercise 1.21

In order to calculate the minimum fuse rating for a time-varying current signal, one must calculate the RMS
current of the signal - not the average current. This is because most fuses are designed to blow at a certain
average power level, and average power is related to the average of the square of current.

Square waves are defined by two amplitudes. When one of those amplitudes is zero, the RMS value is
given by the following equation:

IRMS =

√
I2 + 0

2
=

√
I2

2
=

I√
2
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So in the case of a 0 to 2.0 A square wave with 50% duty cycle, the theoretical minimum current a fuse
should be rated for is:

I√
2
=

2√
2
=

√
2A

In this case, sizing a fuse for the average current (1 A) would too small by a factor of
√
2!

Exercise 1.22

Figure 1.21: A symmetric 5.6 V clamping circuit.

+5V

-5V

1N4148

1N4148

Vin
1 kΩ Vout

Exercise 1.23

For both low-pass and high-pass filters of the first-order, the input impedance is calculated by the series
combination of impedances of both circuit elements. The output impedance is calculated as the parallel
combination of the impedances of the two circuit elements.

Figure 1.22: Low-Pass Filter Driven by a Voltage Source.

−
+Vin

R

C

−

+

Vout

The minimum input impedance of a low-pass filter occurs at high frequency when the capacitor looks like
a short circuit. This is true because this minimizes the impedance of the series-combination of impedances.

Zin,min = R+ 0 = R
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The maximum output impedance a low-pass filter occurs at low frequency when the capacitor looks like an
open circuit. This is true because this maximizes the impedance of the parallel-combination of impedances.

Zout,max = R ∥ ∞ = R

Figure 1.23: High-Pass Filter Driven by a Voltage Source.

−
+Vin

C

R

−

+

Vout

The reasoning for the high-pass filter is the same as for the low-pass filter. The circuit elements are
swapped in their position, but the analysis is the same because: minimizing the input impedance is still
a function of minimizing the series combination impedance; maximizing the output impedance is still a
function of maximizing the parallel combination impedance.

Exercise 1.24

As the question indicated, the bandpass filter is made of a highpass filter and lowpass filter as shown below.

Figure 1.24: Bandpass filter

R1

Vin

C1
R2

C2

Vout

For highpass and lowpass filters, we have

f3dB =
1

2π ∗RC

Given breakpoints, we can determine the resistors and capacitors values to meet the design requirements.

(a) Given f1 = 100Hz from the question:

R1 ∗ C1 =
1

2π ∗ 100Hz
= 1.6ms
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Because the signal source output impedance is 100Ω, we select a value 10 times higher: R1 = 1kΩ
then:

C1 =
1.6ms

1 kΩ
= 1.6 µF

(b) Given f2 = 10 kHz from the question:

R2 ∗ C2 =
1

2π ∗ 10 kHz
= 16µs

Because the output impedance of the high-pass filter was approximately 1 kΩ, we select a value 10
times greater: R2 = 10 kΩ then:

C2 =
16 µs
10 kΩ

= 1.6 nF

Exercise 1.25

(a) The impedance of 2 parallel capacitors is equal to the impedance of a single capacitor C of value
C1 + C2:

Zparallel =
1

1
Z1

+ 1
Z2

=
1

jωC1 + jωC2
=

1

jω(C1 + C2)

(b) The impedance of 2 series capacitors is equal to the impedance of a single capacitor C of value C1C2

C1+C2
:

Zseries = Z1 + Z2

=
1

jωC1
+

1

jωC2

=
1

jω

(
1

C1
+

1

C2

)
=

1

jω

(
C2

C1C2
+

C1

C2C1

)
=

1

jω

(
C1 + C2

C1C2

)
=

1

jω

1(
C1C2

C1+C2

)
=

1

jω
(

C1C2

C1+C2

)

Exercise 1.26

Aejθ = BejϕCejα = BCej(ϕ+α)

Therefore, because A, B, and C are all real numbers, θ must be equal to (ϕ + α), so the exponentials on
either side of the equation cancel.

Aejθ = BCej(ϕ+α)

Aejθ = BCejθ

A = BC
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Exercise 1.27

We can solve this problem from two aproaches: analitically, or by inspecting the power waveform over a full
cycle. First analytically:

V (t) = V0cos (2πft) Define the voltage

I(t) = I0cos
(
2πft+ π

2

)
and current waveforms

P (t) = V (t) · I(t)
= V0I0cos (2πft) cos

(
2πft+ π

2

)
Using cosine multiplication rule

= V0I0
cos

(
4πft+ π

2

)
+����: 0
cos

(
π
2

)
2

we express the power waveform

as a sum of two cosines

Pav =
1

T

∫ T

0

V0I0
cos

(
4πft+ π

2

)
2

dt From this point we take the integral

=
V0I0
2T

[
sin

(
4πft+ π

2

)
4πf

]t=T

t=0

and evaluate over one cycle

=
V0I0
8π

(
sin

(
4π + π

2

)
− sin

(
π
2

))︸ ︷︷ ︸
1−1=0

= 0

As an alternative method we can avoid the integration part by simply observing the power waveform
over one full cycle considering f = 1, I0 = V0 = 2

0 0.5 1 1.5 2

−4

−2

0

2

4
I(t)

V (t)

P (t)

From the plot it is clear that the red and green areas are equal and opposite and thus when integrating
over a integer number of cycles the average power will be zero.
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Exercise 1.28

Figure 1.25: RC Circuit with AC Voltage Source

V0 cosωt

C

R

VR

From discussions before this question, we know that

P = Re(V I∗) =
V 2
0 R

R2 + ( 1
ω2C2 )

=
V 2
0

R
∗ (ωRC)2

1 + (ωRC)2

Since R and C are connected in series, we have

VR

V0
=

R

R+ 1
jωC

Thus, we can calculate the power consumed by the resistor in the following steps.

VR = V0 ∗
jωRC

1 + jωRC

V 2
R

R
=

V 2
0

R
∗ (ωRC)2

1 + (ωRC)2

We can see that it is equal to the real power delivered to the circuit. In another word, all the real power
delivered to this circuit is consumed in the resistor.

Exercise 1.29

(a) RLC series circuit

Since the resistor, inductor, and capacitor are in series, we can calculate the impedance of the circuit
by adding individual impedance together.

Z = R+ jωL− j
1

ωC

Given C = 1
ω2L ,

Z = R+ jωL− jωL = R

Thus, this reactive circuit can be treated as a resistive circuit when calculating the power factor, which
is 1.
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(b) RLC parallel circuit

Since all the components are in parallel, the invert of total impedance is the sum of inverts of all
components’ impedance

1

Z
=

1

R
+

1

jωL
+ jωC

Given C = 1
ω2L ,

1

Z
=

1

R
+

1

jωL
− 1

jωL
=

1

R

Similarly, this show that this circuit can also be treated as a resistive circuit whoes power factor is 1.

Exercise 1.30

Vout is simply the voltage at the output of an impedance voltage divider. We know that ZR = R and
ZC = 1

jωC . Thus we have

Vout =
ZC

ZR + ZC
Vin =

1
jωC

R+ 1
jωC

Vin =
1

1 + jωRC
Vin

The magnitude of this expression can be found by multiplying by the complex conjugate and taking the
square root. √

VoutV ∗
out =

1√
1 + ω2R2C2

Vin

Exercise 1.31

From the frequency response of lowpass filter plotted on logarithmic axes, we know

ϕ = − arctan(
f

fc
)

Thus, when f = 0.1f3dB,
ϕ = − arctan(0.1) ≈ −5.71◦ ≈ −6◦

Similarly, when f = 10f3dB,
ϕ = − arctan(10) ≈ −84.29◦

The phase shift can also be expressed as −(−90− (−84.29)) ≈ 5.71◦ ≈ 6◦

In summary, for single-section RC filters, the phase shift is ≈ 6◦ from its asymptotic value at 0.1f3dB
and 10f3dB.

Exercise 1.32

Given that the current is the same everywhere in series circuits, the axes also shows the relationships among
voltages.

Vout

Vin
=

R

hypotenuse

By Pythagorean Theorem,

R

hypotenuse
=

R√
R2 + (−j/ωC)2

=
R√

R2 + 1
ω2C2

Thus, Vout = Vin ∗ R√
R2+ 1

ω2C2
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Exercise 1.33

For the lowpass filter, Vout and Vin have the following relationship.

Vout = Vin ∗ 1√
1 + ω2R2C2

Given Vout =
1
2Vin,

1√
1 + ω2R2C2

=
1

2

Thus, solving for ω
1

1 + ω2R2C2
=

1

4

1 + ω2R2C2 = 4

ω2R2C2 = 3

ω =

√
3

RC
Since f = ω

2π ,

f =

√
3

2πRC

From previous calculation, we have C =
√
3

RC From the phasor diagram for lowpass filter at 3dB point,
we know that

ℵ = arctan(
−j
ωC

R
) = arctan(− 1√

3
) = −30◦

Thus, the phase shift is
ϕ = −90◦ − (−30◦) = −60◦

Exercise 1.34

From the phasor diagram, we can see that

Vout

Vin
=

C

hypotenuse
=

C√
R2 + C2

pluging in C = −j
ωC

Vout

Vin
=

−j
ωC√

R2 + 1
ω2C2

=
−j

ωC
∗ ωC√

R2ω2C2 + 1
=

−j√
R2ω2C2 + 1

Exercise 1.35

Resistor, inductor, and capacitor in series forms a voltage devider, so

Vout

Vin
=

ZLC

R+ ZLC

Since the inductor and capacitor are in series and ω0 = 1√
LC

, which was derived from f0 = 1
2π

√
LC

. We can

write ZLC as following,

ZLC = ZL + ZC = jωL+
−j

ωC
= j(ωL− 1

ωC
) = jL(

ω2 − ω2
0

ω
)

We can describe the response in the following conditions:
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(a) When f = f0, ω = ω0 and ZLC = 0. Thus, Vout

Vin
= 0.

(b) When f < f0, ω < ω0 and ZC > ZL, which makes the circuit more capcitive. Thus, the circuit has a
similar response as capacitors.

(c) When f > f0, ω > ω0 and ZL > ZC, which means the inductor has more impact on the general
response of the whole circuit. Thus, the circuit responses more like inductors.

Thus, we see the response plot captured in Figure 1.109 from the textbook.

Exercise 1.36

We can see from textbook Figure 1.122 that two SPDT switches can control the lamp independently. We
need to explore wirings that allow DPDT switches to switch from two states. The following wire shows how
to turn DPDT switches to work as described.

Figure 1.26: Wiring a DPDT switch to switch from two states

state 1

state 2

Figure 1.27: Generalization of “three-way” Switch Wiring with Two SPDT Switches And N − 2 DPDT
Switches

Exercise 1.37

Recall that INorton = Ishort circuit the load, so we can transform the circuit as shown below.

Figure 1.28: Circuit to find INorton

−
+ 10V

10k

10k
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Then, INorton = 10V
10 kΩ = 1mA To find RNorton, it’s very similar to how we find R in superposition where

we remove all power sources. Then, the circuit is transformed as shown below.

Figure 1.29: Circuit to find RNorton

10k

10k RNorton

Based on the circuit, RNorton = 1
1
10+

1
10

= 5kΩ Thus, the Norton equivalent circuit is shown below.

Figure 1.30: Circuit to find RNorton

1mA 5kΩ load

When the Rload = 5kΩ, Vout =
5 kΩ
2 ∗ 1mA = 2.5V And, the original circuit is as shown below.

Figure 1.31: Original Circuit with a 5 kΩ load

−
+ 10V

10k

10k 5k

Thus, Vout =
Vin∗ 1

1
10

+ 1
5

10+ 1
1
10

+ 1
5

= 2.5V

Finally, we showed that the Norton equivalent gives the same output voltage as the actual circuit when
loaded by a 5k resistor.
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Exercise 1.38

Based on the circuit shown in this excercise, VTh = Vopen = 0.5mA ∗ 10 kΩ = 5V
Ishort = 0.5mA, so RTh = 5V

0.5mA = 10 kΩ
Similarly, we can find the Thévenin equivalent for the previous excercise.

VTh =
10 kΩ

10 + 10
∗ Vin = 5V

Ishort =
10V

10 kΩ
= 1mA

RTh =
5V

1mA
= 5kΩ

Since the RTh is different from the previous result, we can see that these Thévenin circuits are not the same.

Exercise 1.39

Based on the filter behaviors, the “rumble filter” is essentially a high-pass filter.
Given f3dB = 10Hz from the question:

R ∗ C =
1

2π ∗ 10Hz
≈ 16ms

Since the load (10 kΩ minimum) is in parallel with the reistor in the RC high-pass filer, we should select a
relatively small resistor for the filter design so that the load doesn’t affect the filter’s performance significantly.
We select a resistor: R = 10 kΩ

100 = 100Ω then:

C =
16ms

100Ω
= 160µF

The filter design is shown below.

Figure 1.32: Rumble Filter

−
+Vin

160 µF

100Ω

−

+

Vload

Exercise 1.40

The “scratch filter” for audio signals is essentially a low-pass filter that filter out high-frequency sounds,
such as scratches.

Given f3dB = 10 kHz from the question:

R ∗ C =
1

2π ∗ 10 kHz
= 0.016ms
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Similar to the high-pass filter design in the previous question, we need to pick a low impedance capacitor so
that the load doesn’t affect the filter’s performance significantly. We select a capacitor: C = 0.01 µF then:

R =
1

2π ∗ 10000 ∗ 0.01 ∗ 0.000001
≈ 1.6 kΩ

Figure 1.33: Scratch Filter

−
+Vin

1.6 kΩ

0.01 µF

−

+

Vload

Exercise 1.41

Since we need to design a filter using resitors and capcitors to produce the results as plotted, we need to
think of RC circuits that we discussed before as building blocks for this problem.

Based on the plot, when ω < ω0, the filter acts like a voltage divider and Vout

Vin
= 0.5

When ω > ω0, the filer looks like a high-pass filter.

We can combine voltage divider circuit and high-pass filter as shown below.

Figure 1.34: High-emphasis filter

C

Vin
R1

R2

Vout

when ω < ω0, the capacitor acts as if it’s open, and the circuit is a voltage devider.

Given that Vout

Vin
= 0.5, R1 = R2 = R

When ω > ω0, the high frequency signals can pass the capacitor, but low frequency signals are blocked.
We can find the capacitor value by treating the circuit as a high-pass filter. f3dB = 1

2π∗RC and ω = 2π ∗f3dB
so C = R

ω0
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Exercise 1.42

Figure 1.35: Bandpass filter

R1

Vin

C1
R2

C2

Vout

The bandpass filter is made of a high-pass filter and a low-pass filter. Thus, given f1 and f2, we have

f1 =
1

2π ∗R1 ∗ C1

f2 =
1

2π ∗R2 ∗ C2

As discussed in the session “Driving and loading RC filters” in the book, the assumptions are small input
impedance compared to the load. We can set R1 = 1

10 ∗R2, and then

C2 =
1

2π ∗ f2R2

C1 =
1

f1 ∗ 2πR1
=

1

f1 ∗ 2π ∗ 0.1R2
=

5

πR2f1

Exercise 1.43

The circuit is the diode limiter discussed before (Figure 1.78 in the textbook), and the output is the same as
the plots A and B in Figure1.79. We need to find the characters of the output signal. Given that f = 60Hz

T =
1

f
=

1

60
≈ 17ms

ω = 2πf = 120π

Exercise 1.44

The equivalent capacitance of the oscilloscope and cable is

Co = 100 pF + 20 pF = 120 pF

The equivalent input impedance of the oscilloscope and the total capacitance is: Zo =
(
Ro ∥ 1

jωCo

)
where

Ro is the input resistance of the scope (1MΩ). In order to reduce the voltage by a factor of 10, let us create
a voltage divider between the probe tip and the equivalent scope-and-cable input impedance.
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Figure 1.36: Basic Voltage Divider

−

+

Vin

Zprobe

Zo

−

+

Vout

In order to reduce the voltage by a factor of ten, our circuit must satisfy

Vout =
Vin

10

We know that the output of a voltage divider is given by

Vout = Vin
Zout

Zout + Zin

When we equate the previous two expressions, it yields

Vin

10
= Vin

Zo

Zo + Zprobe

We may cancel Vin from both sides of the equation and rearrange terms

Zo + Zprobe = 10Zo

Subtract Zo from both sides to solve for the probe impedance:

Zprobe = 9Zo

= 9

(
Ro ∥ 1

jωCo

)
= 9Ro ∥ 9

jωCo

= 9Ro ∥ 1

jω
(
1
9Co

)
So our “x10 probe” should be the parallel combination of a resistor and a capacitor. The resistor should

be 9 times greater than the input resistance of the scope (Ro). The probe’s capacitor should be 9 times
smaller than Co (the total capacitance of the cable and the oscilloscope).

Rprobe = 9Ro

Cprobe =
1

9
Co
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Figure 1.37: x10 Probe

−

+

Vin

Cprobe

Rprobe

Ro Co

−

+

Vout

Many x10 probes implement Cprobe as a variable capacitor that the user may tune to very near one ninth
the cable-plus-oscilloscope capacitance. This is sometimes referred to as “probe compensation”.

The input impedance of this x10 probe is

Zin = Zprobe + Zo

= 9Ro ∥ 1

jω
(
1
9Co

) +

(
Ro ∥ 1

jωCo

)
= 9

(
Ro ∥ 1

jωCo

)
+

(
Ro ∥ 1

jωCo

)
= 10

(
Ro ∥ 1

jωCo

)
Zin = 10Zo

Finally, lets take a look at how the probe and the oscilloscope (working as a voltage divider) affect the output
voltage as a function of the input voltage.

Vout

Vin
=

Zo

Zin

=
Ro ∥ 1

jωCo

10
(
Ro ∥ 1

jωCo

)
Vout

Vin
=

1

10

It is remarkable! The voltage transfer function of this circuit is precisely 1
10 . This circuit contains four

passive components (two of them reactive) but the transfer function does not depend on frequency.
Truly, the ancients were wise and knew many great things.



Solutions for Chapter 2

Exercise 2.1

In order to solve this problem, many assumptions must be made. Different people may assume slightly
different values for parameters. This is OK. What is important is making good assumptions and checking
our conclusions to make sure they are reasonable.

To solve for the current in the LED, let us assume we know the LED is red, so it follows the red LED
curve from Figure 2.8 in the book. Let us also assume the transistor is acting like a closed switch, so the
collector voltage of Q1 is close to 0V. Let us also assume the LED is ON, so it’s voltage is approximately
VLED = 2V. From the preceding assumptions, we can calculate that the LED current is

ILED =
3.3V − 2V

330Ω
=

1.3V

330Ω
≈ 3.94mA

If we use Figure 2.8 (from the textbook) to check our numbers, we see that a current of 3.94mA roughly
correlates to an LED voltage of VLED = 1.7V. We will run the same calculation again to reduce our error.

I∗LED =
3.3V − 1.7V

330Ω
=

1.6V

330Ω
≈ 4.85mA

In order to determine the minimum current gain required from our transistor, we must calculate the base
current. Let us assume we know the base-emitter voltage VBE = 0.6V. Therefore

IB =
3.3V − 0.6V

10 kΩ
= 270µA

So the minimum current gain must be

βmin =
I∗LED

IB
≈ 4.85mA

270 µA
≈ 18.0

33
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Exercise 2.2 TODO: write solution

Exercise 2.3 TODO: write solution

Exercise 2.4 TODO: write solution

Exercise 2.5 TODO: write solution

Exercise 2.6 TODO: write solution

Exercise 2.7 TODO: write solution

Exercise 2.8 TODO: write solution

Exercise 2.9 TODO: write solution

Exercise 2.10 TODO: write solution

Exercise 2.11 TODO: write solution

Exercise 2.12 TODO: write solution

Exercise 2.13 TODO: write solution

Exercise 2.14 TODO: write solution

Exercise 2.15 TODO: write solution

Exercise 2.16 TODO: write solution

Exercise 2.17 TODO: write solution

Exercise 2.18 TODO: write solution

Exercise 2.19 TODO: write solution

Exercise 2.20 TODO: write solution

Exercise 2.21 TODO: write solution

Exercise 2.22 TODO: write solution

Exercise 2.23 TODO: write solution

Exercise 2.24 TODO: write solution

Exercise 2.25 TODO: write solution

Exercise 2.26 TODO: write solution

Exercise 2.27 TODO: write solution

Exercise 2.28 TODO: write solution

Exercise 2.29 TODO: write solution

Exercise 2.30 TODO: write solution
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